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Abstract. Equations are derived which describe the time evolution of the probability density and
corresponding characteristic function of a telegraph signal which has passed through a detuned
Lorentzian filter. A closed form expression for the characteristic function is obtained for the tuned
case and the predicted joint statistics and correlation properties are reviewed in the context of earlier
results. Low-order correlation properties for the more general detuned case are calculated. It is
shown that the stationary single interval statistics can be generated by a random phasor moving in a
space of fractional dimensions and that a simple transform of variable leads to distributions which
are stable in this space.

1. Introduction

A telegraph signal is a signal that switches randomly between two values. Telegraph signals
are widely encountered throughout science and engineering. They have been used as simple
binary random models for physical phenomena ranging from turbulent mixing and biological
dispersal, to quantum jumps. Several recent applications of telegraph signal theory have
been concerned with the propagation of radiation through dense scattering media and have
sought to exploit properties of persistent orcorrelatedrandom walk models. It is argued that
the statistical properties of the transmitted radiation are governed by generalizations of the
‘telegrapher’s’ equation governing the flow of electricity in cables, which was derived in a
classic paper written by Goldstein in the early 1950s [1]. This equation provides a statistical
description of the outcome of a correlated random walk and is parametrized by a characteristic
time and velocity [2].

An earlier interest of one of the present authors in telegraph signals arose in the search for
a simple non-Gaussian random surface-scattering model. The electromagnetic field scattered
by a surface of rectangular grooves at normal incidence is, in a physical optics approximation,
simply proportional to the integral of a telegraph signal (representing the surface profile) over
the illuminated area of surface and its statistical properties are governed by the telegrapher’s
equation [3,4]. This type of model is relevant to the performance of infrared systems employing
optical elements with diamond-turned surfaces.

Our more recent activity has been stimulated in part by the development of a diagnostic
technique for semiconductor lasers based on electrical filtering after heterodyne detection [5].
According to one model for laser light, this form of post-detection processing could again lead
to integration over a telegraph signal. However, in this case the integration is weighted by a
memory function proportional to the Fourier transform of the applied filter shape rather than
being over a fixed time interval or hard aperture as in the applications mentioned previously.
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In the case of a tunedLorentzianfilter it was found that exact analytical expressions for the
equilibrium single-interval probability density and low-order coherence functions of the signal
could be derived [6]. Some results were also obtained for the detuned case where the filter
profile is not centred at zero frequency.

Since the publication of [6], a significant body of past literature concerning the Lorentzian
filtered telegraph signal, stretching from the late 1950s to the early 1970s, has come to our
attention. Early work was published by Wonham and Fuller [7,8] and McFadden [9], and the
subject was comprehensively reviewed in two papers by Pawula [10,11] who has made several
more recent contributions to the field [12–15]. An interesting feature of the mathematical
analyses presented in these papers is the derivation of telegrapher-type equations with variable
coefficients. This is a topic which has been considered recently in more general terms by
Masoliver and Weiss [16] and relates to variations of the weighting orvelocityapplied to each
step of the random walk by the filter. However, most recent work has continued to highlight
solutions of the constant-velocity telegrapher’s equation and to develop generalizations in more
than one dimension for applications such as light propagation in turbid media [17–25].

Our aim in writing this paper is to extend the calculations of previous authors to include
the effect of detuning, when the Lorenztian filter is not centred at zero frequency. In doing
so we use a simple approach to the derivation of a Fokker–Planck equation which can readily
be generalized to other types of dichotomous random walk. This enables us to review and
simplify existing formulae as well as derive a number of new results.

The Lorentzian filtered random telegraph signal can be written as

E(t) = λ
∫ t

−∞
dt ′ T (t ′) exp[λ(t ′ − t) + iω(t ′ − t)]. (1)

Here, the telegraph signalT = ±1 and its zero crossings are a random (Poisson) train
of events with characteristic exponentially distributed inter-event time 1/γ . The exponential
memory function corresponds to a Lorentzian filter of linewidthλ centred at frequencyω.
This uses the notation of [6] where we noted that (1) is also an expression for the complex
wave amplitude in the far field of a randomly grooved phase object (or ‘screen’) illuminated
by a coherent beam of radiation with a negative exponential intensity profile. New results
obtained in the current analysis will be presented alongside statistical properties calculated by
previous authors, providing a more comprehensive overview of the problem than has appeared
hitherto, including generalization to the detuned case. We shall draw attention to a number of
features of the results which have not been discussed in previous publications. These include an
analogue of a so-called ‘memory’ effect which has featured prominently in the recent literature
on speckle phenomena [26], and the close relationship between the single interval statistics
derived here, the properties of ann-dimensional random phasor and the class of Levy-stable
distributions [27].

In the next section equations for the characteristic function of the conditional probability
density of a Lorentzian filtered telegraph signal will be derived from first principles, assuming
that the filter is tuned (i.e. centred at zero frequency). In section 3 exact solutions for the
characteristic functions of the conditional and joint probability densities will be presented
for the tuned case, whilst in section 4 expressions for the single interval statistics and the
low-order correlation properties will be given. Equations for the generalized case, included
detuning are derived in section 5, and some low-order correlation properties for the detuned
filter are presented. The results will be discussed in section 6, drawing attention to features of
particular current interest. A summary and concluding remarks are given in section 7.
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Figure 1. Diagram showing how the probability density increases
with time as a result of different trajectories converging into a smaller
interval (noteE andt scales are not the same).

2. Derivation of equations for the conditional and joint statistics

In this section we will derive differential equations for the conditional probability density of
E defined by formula (1). These equations have been given previously for the tuned case
ω = 0 [8,10], the present derivation has the advantage of being easily extended to the case of
a detuned filter.

Considering first the tuned case, equation (1) can be written in differential form as

dE

dt
= −E ± 1 (2)

where the±1 refers to the two different states of the telegraph signalT , and the timet has been
normalized by the time constant of the filterλ. If we considerE as a point in a one-dimensional
space, equation (2) defines a variable velocity which depends on the positionE, as well as
the state of the telegraph signal. Thus, motion ofE can be considered as a random walk with
variable velocity.

Following Wonham [8], we define two probability densities:

P +(E, t)dE P−(E, t)dE (3)

whereP + is the probability that at timet the filtered signal lies betweenE andE + dE, and
the telegraph signal has value +1.P− is the corresponding density for the−1 state of the
telegraph signal.

Consider what happens during a small time intervalδt . If δt is sufficiently small (such that
terms inδt2 can be neglected), there is a negligible probability of more than one change in the
state of the telegraph signal during the interval. Thus the differential change in the probability
during the interval can be expressed as a sum of two terms, one corresponding to there being
no change in the state of the telegraph signal, and the other corresponding to a single transition
during the interval.

If the densityP + isP +(E, t)dE across an interval dE at timet , the density at timet + δt
will have changed even if there is no change in the state of the telegraph signal. This is because
the variable velocity defined by (2) results in a compression of the interval over whichP + is
defined. This is illustrated in figure 1.

The value ofE lies betweenE andE + dE at time t . After time δt has elapsed, it is
betweenE + (1−E) δt andE + (1−E) δt + dE(1− δt). Thus, if the telegraph signal remains
in the +1 state the probability density after timeδt is given by

P +(E + (1− E) δt, t + δt) dE(1− δt)
≈
(
P +(E, t)(1− δt) + (1− E)∂P

+

∂E
δt +

∂P +

∂t
δt

)
dE. (4)

Here a Taylor expansion has been carried out and higher terms inδt have been neglected
to give the expression on the right-hand side. Assuming that the state of the telegraph signal is
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determined by a sequence of Bernoulli trials, the probability of this outcome (i.e. the telegraph
signal remaining in the +1 state) is(1− ηδt), whereηδt is the probability of a transition to the
−1 state, and the normalized transition probability isη = 2γ /λ. Thus, in order to calculate
the total probability forP +, we need to equate (4) to(1−ηδt)P +(E, t)dE and add the second
term, which is the probability of a transition from the−1 state to the +1 state occurring during
δt . To first order inδt this second term is simply given byηδtP−(E, t). This results in the
following equation:

(E − 1)
∂P +

∂E
− (η − 1)P + + ηP− = ∂P +

∂t
. (5)

Similar considerations forP− give a second equation

(E + 1)
∂P−

∂E
− (η − 1)P− + ηP + = ∂P−

∂t
. (6)

These two equations were first given by Wonham in [8]. Similar arguments can be used to
derive equations for the detuned case, which is discussed in section 5.

The derivation method given above can be extended to a more general random walk with
a variable velocity which is an arbitrary function ofE; this will be the subject of a future paper.

It is convenient to work with the characteristic function, which is the Fourier transform of
the probability distribution. That is:

C+(k, t) =
∫ ∞
−∞

P +(E, t)e−ikEdE. (7)

Taking transforms of equations (5) and (6) gives

−k ∂C
+

∂k
− (η + ik)C+ + ηC− = ∂C+

∂t
(8)

−k ∂C
−

∂k
− (η + ik)C− + ηC+ = ∂C−

∂t
. (9)

3. The conditional and joint characteristic functions

In this section we will investigate the two point statistics of the filtering process. First we will
consider the probability of finding a valueE at timet given that the value wasE0 at an earlier
time which we take (without loss of generality) ast = 0. Some care needs to be taken here
since (as noted by Pawula [10]) specifying a value ofE0 does not give a complete description
of the system att = 0. The subsequent time evolution depends on whether the telegraph signal
is in the +1 or−1 state att = 0. We will start by treating the two cases separately and useE+

0
to indicate that the signal is in the +1 state andE−0 for the−1 state.

By differentiating and combining (8) and (9), a single second-order equation can be found
for the combined characteristic functionC = C+ +C−:

k2∂
2C

∂k2
+ 2ηk

∂C

∂k
+ k2C = (1− 2η)

∂C

∂t
− ∂

2C

∂t2
− 2k

∂2C

∂k∂t
. (10)

The general solution of this equation is straightforward; making the changes of variables
to z = exp(t) andy = k exp(−t) reduces it to the standard form:

z2∂
2C

∂z2
+ 2ηz

∂C

∂z
+ y2z2C = 0 (11)

which has solutions (in terms of the original variables)

C(k, t) = εη− 1
2 (A(kε)Jη− 1

2
(k) +B(kε)Yη− 1

2
(k)) (12)
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whereε = exp(−t), Jv is the Bessel function of the first kind of orderv, andYv is the Bessel
function of the second kind.A andB are arbitrary functions, with argumentkε.

Boundary conditions are provided by the value ofC and its first derivative with respect to
time att = 0. E takes the valueE0 at t = 0, which givesC(k, t = 0) = exp(−ikE0). The
value of the time derivative at zero can be found from equations (8), (9), and depends on the
state of the telegraph signal:

∂C

∂t

∣∣
E+

0
= ik(E0 − 1)e−ikE0

∂C

∂t

∣∣∣E−0 = ik(E0 + 1)e−ikE0.

(13)

Using these boundary conditions it is not difficult to show that

C(k, t |E+
0) =

πkεη+ 1
2 e−ikE0ε

2
(Yη− 1

2
(k)[Jη+ 1

2
(kε)− iJη− 1

2
(kε)]

−Jη− 1
2
(k)[Yη+ 1

2
(kε)− iYη− 1

2
(kε)]). (14)

The corresponding expression for the case in which the telegraph signal is in the−1 state
at t = 0 is

C(k, t |E−0 ) =
πkεη+ 1

2 e−ikE0ε

2
(Yη− 1

2
(k)[Jη+ 1

2
(kε) + iJη− 1

2
(kε)]

−Jη− 1
2
(k)[Yη+ 1

2
(kε) + iYη− 1

2
(kε)]). (15)

For larget (14) and (15) become equal and independent oft andE0. This is because the
filter has a limited memory. The time-independent first-order probability density can be found
from (14) or (15) by takingt →∞, which gives

C(k) = 0
(

1

2
+ η

)(
k

2

)1
2−η

Jη− 1
2
(k). (16)

Inverse transformation yields the well known result

P(E)

=
0( 1

2 + η)√
π0(η)

(1− E2)η−1 for |E| < 1

= 0 otherwise
(17)

where0 is the Euler gamma function. The densitiesP + andP− are most easily found by using
the relationship(1− E)P +(E) = (1 +E)P−(E). This follows from the fact that the filter
output passes through a given value ofE the same number of times in the negative direction as
it does in the positive direction, thus the probabilitiesP +(E) andP−(E) only differ due to the
different rates of change, which are (from (2))(1−E) and(1 +E) respectively. Substitution
into (5) and (6) yieldsP +(E) = (1 +E)P (E)/2 andP−(E) = (1− E)P (E)/2. From these
results one can see that the following conditional probabilities apply:

P(T = +1|E) = (1 +E)/2

P(T = −1|E) = (1− E)/2. (18)

These can be used to combine (14) and (15) into a singleconditionalcharacteristic function
which is independent of the state of the telegraph signal att = 0:

C(k, t |E0) = πkεη+ 1
2 exp(−ikεE0)

2
(Yη− 1

2
(k)Jη+ 1

2
(kε)− Jη− 1

2
(k)Yη+ 1

2
(kε)

+iE0(Jη− 1
2
(k)Yη− 1

2
(kε)− Yη− 1

2
(k)Jη− 1

2
(kε))). (19)

From this we can calculate thejoint characteristic function. This is the Fourier transform
of the joint probability density, which is the probability of obtainingE0 at t = 0 andE at
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t . We multiply equation (19) byP(E0) and take the Fourier transform, with new transform
variablek′, which gives

C(k′, k) = π0( 1
2 + η)k( k

′+kε
2 )

1
2−ηεη+ 1

2

2
×{Jη− 1

2
(k′ + kε)[Yη− 1

2
(k)Jη+ 1

2
(kε)− Jη− 1

2
(k)Yη+ 1

2
(kε)]

+Jη+ 1
2
(k′ + kε)[Jη− 1

2
(k)Yη− 1

2
(kε)− Yη− 1

2
(k)Jη− 1

2
(kε)]}. (20)

4. Distributions and correlation coefficients

Closed forms for the characteristic functions corresponding to the conditional and joint
densities given in the last section have not previously been published. However, some
expressions for the densities themselves have already appeared in the literature. In this section
we shall indicate how the probability densities characterizingE of equation (1) can be obtained
from the results of the last section, referring as appropriate to previous work.

The single interval equilibrium density (17) appears to have been first derived in the present
context by Wonham and Fuller [7] using the method of moments. The present authors also used
this method [6] which exploits the factorization properties of theN -fold correlation function
of a random telegraph signal [7,28] and symmetries within the multiple integral which has to
be evaluated. The result obtained in this way is

〈E2N 〉 = (2N)!0
(

1
2(1 +η)

)
22NN !0

(
N + 1

2(1 +η)
)

〈E2N+1〉 = 0

(21)

and it is not difficult to demonstrate directly that these are the moments of the symmetric single
interval distribution (17). Conversely, having calculated the moments (21) from first principles
one can construct the characteristic function

〈exp(ikE)〉 =
∞∑
N=0

(−1)N

(2N)!
〈E2N 〉 (22)

leading to result (16).
In order to evaluate the conditional and joint probability densities from the results of the

last section we first note that equation (19) may be expressed in the form

C(k, t |E0) = 1

2
πεη+ 1

2 exp(−ikεE0)

(
η − 1

2

ε
− ∂

∂ε
− ikE0

)
pη(k, ε)

where

pη(k, ε) = Yη− 1
2
(k)Jη− 1

2
(kε)− Jη− 1

2
(k)Yη− 1

2
(kε). (23)

The simpler characteristic function conditional onE0 = 0 at timet = 0 was apparently
first derived by McFadden ( [9]—given in a slightly different form) and again more recently
by Morita [29], but the corresponding distribution was derived later from the real-space partial
differential equations by Wonham [8] and therefore only anindirect proof of their equivalence
exists. A careful search of the literature has failed to reveal the Fourier transform of the
relatively simple combination of Bessel functions appearing in expression (23). However,
defining

fv(E) = 1

2π

∫ ∞
−∞

dk exp(ikE)[Yv(k)Jv(kε)− Jv(k)Yv(kε)] (24)
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we show in appendix D that a result may be obtained in terms of Legendre functions as follows:

fv(E)

=
1

π
√
ε
Pv− 1

2

(
1 + ε2 − E2

2ε

)
|E| 6 1− ε

= 0 otherwise.
(25)

With a little manipulation the Fourier transform of (23) can now be expressed, using this
result, in the form

P(E, t |E0)


= ηεη−1

2(1− x2)
[(X − x)Pη(x) + (1− xX)Pη−1(x)] + εη1

for |E0| 6 1, |E − εE0| 6 1− ε
= 0

otherwise

(26)

where

X = ε − EE0 + εE2
0 x = [1 + ε2 − (E − εE0)

2]/2ε

1 = 1
2[(1 +E0)δ(E − εE0 − 1 + ε) + (1− E0)δ(E − εE0 + 1− ε)].

The earlier result of Pawula [10] is expressed in term of hypergeometric functions but using
linear transformation formulae and Gauss’s relations for contiguous functions can be shown
(see appendix A) to be identical to formula (26). The joint probability density is obtained
immediately by multiplying this expression by the single interval equilibrium density (17) for
E0.

A number of useful results for the low-order moments and correlation functions can be
derived from the above formulae or directly from the definition (1) using the factorization
properties of the telegraph signal correlations. For example, the fourth normalized moment of
E can be written down immediately from equation (17):

〈E4〉
〈E2〉2 = 3

η + 1

η + 3
. (27)

This provides a simple measure of the integrating effect of the filter, tending to unity in
the broadband limit,η → 0, when the filter has no effect so thatE2 ∝ T 2 = 1 and to the
one-dimensional Gaussian value of 3 in the narrowband limit.

The two-time correlation functions for the process can be calculated from (20) or (26),
or directly from the definition (1) using the factorization properties of the telegraph signal
correlations. Thus we obtain:

g(1)(t) = 〈E(0)E(t)〉〈E2〉 = exp(−η|t |)− η exp(−|t |)
1− η (28)

g(2)(t) = 〈E
2(0)E2(t)〉
〈E2〉2 = 1 +

2η exp(−|t |)[2 exp(−η|t |)− (1 +η) exp(−|t |)]
(3 +η)(1− η) . (29)

It is not difficult to verify that formula (29) reduces to (27) in the limitt → 0.

5. The detuned case

If the telegraph signal is detuned from the centre of the filter(ω 6= 0), E, as defined by
equation (1) becomes complex; thus the changes inE can be considered as a two-dimensional
random walk in the complex plane. LettingE = x + iy, we can describe the operation of the
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filter by a pair of differential equations:

dx

dt
= −x + ξy ± 1 (30)

dy

dt
= −y − ξx (31)

whereξ = ω
λ
. The probability densities are functions of bothx andy, e.g.p+(x, y, t)dx dy.

Differential equations for these densities can be derived in the same way as in the one
dimensional case. In this case it is the change in differential area dx dy with time which
needs to be taken into account. Following the same procedure of retaining terms to first order
in δt leads to the following pair of equations:

(2− η)p+ + ηp− + (x − ξy − 1)
∂p+

∂x
+ (y + ξx)

∂p+

∂y
= ∂p+

∂t
(32)

(2− η)p− + ηp+ + (x − ξy + 1)
∂p−

∂x
+ (y + ξx)

∂p−

∂y
= ∂p−

∂t
. (33)

In the case ofω = 0 these reduce to equations (5) and (6) as follows: the two-dimensional
probability densityp(x, y, t)dx dy is reduced to the one-dimensional densityp(x, t)dx by
integration over they coordinate. For example, equation (32) is rewritten as

(1− η)p+ + ηp− + (x − 1)
∂p+

∂x
+
∂yp+

∂y
= ∂p+

∂t
. (34)

The substitutionp(x, y) = p(x)δ(y) (whereδ is the Dirac delta function) is made and, when
the integration overy is carried out, the final term on the left-hand side of (34) gives zero,
resulting in equation (5).

These are significantly more complicated than theω = 0 equations, and we have not
succeeded in solving for the time-independent density, even for special values ofη. The
chances of finding closed form solutions for the conditional and joint distributions or their
characteristic functions appear to be slim.

It is possible to calculate the low-order moments and correlation functions directly from
equation (1), and for the second and fourth moments one obtains

〈|E|2〉 = 1 +η

(1 +η)2 + ξ2
(35)

and

〈|E|4〉
〈|E|2〉2 =

2(3 +η)[(1 +η)2 + ξ2]

(1 +η)[(3 +η)2 + ξ2]
+

[(1 +η)2 + ξ2][(1 +η)(3 +η)− ξ2(5 + 2η)]

(1 + ξ2)(1 +η)2[(3 +η)2 + ξ2]
(36)

whilst the first-order coherence function may be expressed in the form

〈E(0)E∗(t)〉 = 1

1− η − iξ

[
exp(−η|t |)
1 +η + iξ

− η exp(−|t | + iξ t)

1 +η − iξ

]
. (37)

The second-order coherence function can also be calculated from equation (1) through a
lengthy and tedious calculation. The rather complicated result is analytically opaque and is
therefore presented only in an appendix (appendix B). However, some numerical results are
discussed in the next section.

A further quantity of interest is the degree of correlation between the outputs of two
filters centred at different frequencies. As we have discussed elsewhere [6], this arrangement
is analogous to a light scattering configuration in which the correlations in light relating
to different scattering vectors are measured. These are known to exhibit spatial ‘memory’
effects in which high speckle correlation is observed for certain combinations of incident and
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Figure 2. An example of the time evolution ofE. Here the time is in arbitrary units, and the
dimensionless transition rate isη = 1.

Figure 3. Plots of the single-interval probability density, given by equation (17), for different
values of the dimensionless transition rateη.

scattered directions [26]. Unfortunately, calculation of the relevant correlation function from
equation (1) again results in a lengthy and opaque analytical formula. Numerical results will
be presented in the next section but the details of the calculation and formula will be reserved
for appendix C.

6. Discussion

Some numerical simulations of the Lorentzian filtered telegraph signal are shown in figure 2
(see [6]). Examples of the single interval equilibrium density (17), which is plotted in figure 3,
are commonly encountered in the literature. The distribution progresses from a pair of delta
functions at±1 whenη is zero, through a uniform distribution whenη = 1, to a Gaussian shape
at large values of the parameter. According to equation (27) its normalized second moment
increases monotonically from one to three over the same range. The caseη = 1

2 is the well
known ‘U’-shaped distribution of the amplitude of a randomly phased sine wave. A number
of stochastic models lead to this kind of distribution, for example, theJacobiprocess [30].
However, the higher-order joint statistics and correlation properties for this Markov process
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are different from those of the Lorentzian-filtered telegraph signal studied here.
The relationship to the random phasor problem suggests an investigation of the more

generald-dimensional case. We assume that

u⇀ = (a1, a2, a3, . . . , ad)

is a randomly oriented vector in ad-dimensional space with Cartesian componentsai . The
characteristic function,

C(u⇀) = 〈exp(−iu⇀ · u⇀)〉

P(a1, a2, . . . , ad) = 1

(2π)d

∫
du⇀ C(u⇀) exp

(
i
d∑
n=1

unan

)
(38)

can be calculated by writingu⇀ · u⇀ = ua cosθ where the components of the phasor are

a1 = a cosθ

a2 = a sinθ cosφ1

a3 = a sinθ sinφ1 cosφ2

...

ad = a sinθ sinφ1 sinφ2 . . . sinφd−2 cosφd−1.

Thus

C(u⇀) =
∫ π

0
dθ sind−2 θ exp(−iua cosθ)

= √π0
(
d − 2

2

) Jd
2−1

(ua)(
1
2ua

) d
2−1

(39)

which is similar to equation (16). The probability density of any component of the phasor can
be calculated from this result by substituting into equation (38) and setting all the{un} equal
to zero save one. This gives

P(a) = 1√
π

0
(
d
2

)
0
(
d−1

2

) (1− a2)
d−3

2 (40)

which is identical with the distribution (17) if we make the identification

η = (d − 1)/2. (41)

Clearly only the integer and half-integer values ofη correspond to an integer number
of dimensions in the phasor problem and it is interesting that the present model appears to
interpolate result (40) to the case whered may be fractional.

The transformation of variables

f = E√
1− E2

(42)

applied to the single-interval equilibrium density (17) obtains the class of distributions

P(f ) = 0(η + 1
2)√

π0(η)

1

(1 +f 2)η+ 1
2

for |f | <∞. (43)

Heref would be the cotangent of the angle between a random phasor moving in ad-
dimensional space and a given direction for example, if (41) was satisfied. These student’s
t-distributions with 2η degrees of freedom have attracted new interest recently because of their
power-law behaviour at large arguments and have been derived by minimizing a constrained



Statistics of a filtered telegraph signal 8813

Figure 4. The probability density function (omitting the delta function parts) at timet for various
values oft conditional onE being equal to 0.5 att = 0. (a) For a dimensionless transition rateη
equal to 8. (b) Forη = 0.5.

generalized entropy function [31]. The special caseη = 1
2 is the Cauchy or Laplace

distribution, which is a member of the Levy-stable class and has an exponential characteristic
function [27]. In the present context, wheref is interpreted as a scalar variable, other members
of the class are not stable as their characteristic functions are modified Bessel functions with
the same form asK-distributions [32]. However, iff were the amplitude of a vector in aD-
dimensional space, then a distribution of the type (43) (though with a different normalization)
would be stable ifη = D

2 .
The time evolution of the statistics governed by formula (26) is illustrated in figures 4(a)

and (b) for two values ofη. The delta function parts are omitted and the density is plotted over
the region for which it is non-zero. Both plots start atE0 = 0.5, and show how the distribution
becomes symmetric aboutE = 0 for long times. The functional form is highly dependent on
the parameterη even for short delay timest (note, however, that the delta function bits, which
dominate the densities for smallt , are omitted).

We note that whenη = 1
2, the result of (20) may be expressed in terms of elliptic integrals.

As pointed out by Pawula [10], the conditional distribution reduces to a particularly simple
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Figure 5. The normalized fourth moment of|E| (equation (36)) as a function of the dimensionless
transition rateη, for different values of the dimensionless detuning parameterξ .

form whenη = 1:

P(E, t |E0)

=
1

2
+ ε1 for |E0| 6 1, |E − εE0| 6 1− ε

= 0 otherwise
(44)

whereε = exp(−|t |) as before and1 is defined in equation (26). According to equation (17)
this need only be multiplied by a further factor of1

2 to obtain the joint distribution. (44) is
characterized by a single time constant because the filter response time is matched to the
telegraph signal switching time. This is manifest in the first- and second-order coherence
functions (28), (29) which reduce for this case to

g(1)(t) = (1 + |t |) exp(−|t |)
g(2)(t) = 1 + 1

2(1 + 2|t |) exp(−2|t |). (45)

Note that the leading-order terms in an expansion of the first-order correlation function
aboutt = 0 are of the form 1− t2+|t |3+· · · , indicating the sub-fractal nature ofE. In fact, this
behaviour is found for all values ofη and relates to the fact thatE is only once differentiable,
the telegraph signal itself behaving like a Brownian fractal with an outer but no inner scale.

It is evident from formula (26) that the conditional density reduces to a simple combination
of Legendre polynomials whenη is an integer and it is then possible to express the result
algebraically. Thus, for the caseη = 2 we obtain

P(E, t |E0)


= 3

2(1− E2) + 4εEE0 + 1
2(1− 5E2

0) + ε21

for |E0| 6 1, |E − εE0| 6 1− ε
= 0

otherwise.

(46)

The coherence function (28) is clearly characterized by two different exponential decays
in this case.

In the detuned situation, the fourth-order normalized moment ofE approaches the value
2 + 1/(1 + ξ2) in the limit whenγ → ∞, i.e. as the telegraph signal crossing rate increases
with all other frequencies fixed. When the detuning is small this expression reduces to 3—the
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Figure 6. The coherence function (equation (C.3), normalized by equation (35)) as a function of
time for detuning parameterξ = 10, and different values of the dimensionless transition rateη.

Figure 7. Intensity correlation function for two different frequencies, plotted as a function ofξ for
ξ = 5, and three different values of the dimensionless transition rateη.

result expected for a linear one-dimensional Gaussian process, whilst when the detuning is
large it reduces to 2 corresponding to a circular complex Gaussian process. In between these
limits the process is elliptical. Some care is required in the analysis of limiting cases. For
example, in a previous paper [6] we have shown by scaling parameters withγ rather than
λ that if ω is non-zero the narrow band limit,λ → 0, alwaysleads to a normalized fourth
moment of 2. Figure 5 shows that there can be a weak maximum in the degree of fluctuation
as a function of crossing rate rather than the monotonic behaviour found whenE is real. This
is also manifest in the height of the peak at zero delay of the coherence functions plotted in
figure 6 forξ = 10, which is slightly in excess of 2 forη = 2. In this detuned case oscillations
are observed when the telegraph signal crossing rate is on the order of, or smaller than, the
offset frequency. However, these disappear as the crossing rate increases.

Figure 7 shows the correlation between intensities obtained using filters centred at different
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frequencies. Peaks are observed when the filters are centred at the same frequency or at
frequencies symmetrically placed about zero. This phenomenon is related to the simplest of
the so-called ‘memory’ effects which has figured prominently in recent years in the literature
on the spatial structure of speckle patterns in multiple scattering configurations [26]. In the
present work it is a trivial consequence of the fact that, from equation (1), the square modulus
of E is independent of the sign of the frequency shift,ξ (see equation (C.1)). Note that
related effects were also predicted and observed in earlier work on the detection of hidden
gratings [33].

In the Gaussian (narrowband) limit the peak of the correlation is 2 and saturation occurs
at a value of unity as expected when the frequency separation becomes large. Whenη is
small, however, there is some residual correlation at large frequency separations. This is
because the filter integrates over only a few flips of the telegraph signal in this limit and
these generate variations in the signal spanning a wide frequency range. Similarly, the anti-
correlation predicted when the crossing rate and filter bandwidth are comparable (figure 7) is
caused by flips of the telegraph signal directing energy into frequency bands which vary as the
memory function sweeps over the input signal.

Finally, we note that a number of other results on the distribution of slope, level crossings,
maxima and minima and specular points have been given by Pawula [11].

7. Summary

In this paper we have presented a simple formulation of the equations characterizing the
statistics of a Lorentzian filtered random telegraph signal. These we have solved for the
characteristic function and conditional probability density of the fluctuations. We have
discussed the results in the context of previous work. We have illustrated both individual
realizations of the process and its statistical properties by a combination of numerical and
analytical techniques and drawn attention to properties which may be of particular current
interest. Whilst the original motivation for our investigation lies in the area of light scattering
and laser physics, the model we have studied and other related dichotomous noise driven
systems which can be studied using the same approach, have potential as stochastic models in
a wide range of applications as witnessed by the large recent literature on the subject.
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Appendix A

We show here how Pawula’s original solution for the conditional distribution of a Lorentzian
filtered telegraph wave in the tuned case may be expressed in terms of Legendre functions.
The transformation formulae for hypergeometric functions used in the derivation and their
relationship to the Legendre functions are given in [34], chapters 8 and 15.

According to Pawula [10],

P(E, t |E0) = η

4

(
1− w
ε

)1−η
[(1 + ε − EE0 + εE2

0)F1(w) + η(1− ε +EE0 − εE2
0)F2(w)]

+εη1 for |E0| 6 1, |E − εE0| 6 1− ε (A.1)
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where

w = (1− ε)2 − (E − εE0)
2

(1 + ε)2 − (E − εE0)2

F1(w) = 2F1(1− η,−η; 1;w) = (1− w)η−1
2F1(1− η, 1 +η; 1;w/(w − 1))

F2(w) = 2F1(1− η, 1− η; 2;w) = (1− w)η−1
2F1(1− η, 1 +η; 2;w/(w − 1)).

(A.2)

Now, from [34] we have

2F1(1− η, 1 +η; 2; z) = −(1− z)
1+η

η2

d

dz
(1− z)−η 2F1(−η, 1 +η; 1; z)

= −(1− z)
1+η

η2

d

dz
(1− z)−ηPη(1− 2z)

= − 1

2ηz
[Pη(1− 2z)− Pη−1(1− 2z)] (A.3)

and

2F1(1− η, 1 +η; 1; z) = d

dz
z2F1(1− η, 1 +η; 2; z)

= − 1

2η

d

dz
[Pη(1− 2z)− Pη−1(1− 2z)]

= 1

2(1− z) [Pη(1− 2z) + Pη−1(1− 2z)]. (A.4)

Substitution of (A.3) and (A.4) into (A.1) and (A.2) yields our equation (26).

Appendix B

In this appendix we outline the calculation of the second-order coherence function for the
detuned case. We take advantage of the factorization properties of the random telegraph
signal [28], in particular the relation

〈T (x1)T (x2)T (x3)T (x4)〉 = exp[−η(x4 − x3 + x2 − x1)] for x1 < x2 < x3 < x4.

(B.1)

The required statistic may be written as

〈|E(0)|2|E(t)|2〉 =
∫ 0

−∞
dt1

∫ 0

−∞
ds1

∫ t

−∞
dt2

∫ t

−∞
ds2 cosξ(t1− s1) cosξ(t2 − s2)

× exp(t1 + s1 + t2 + s2 − 2t)〈T (t1)T (t2)T (s1)T (s2)〉. (B.2)

Exploiting the symmetry properties of the integrals, they can be expressed in the form

〈|E|4〉 exp(−2t) + 4
∫ t

0
dt2

{∫ 0

−∞
ds2

∫ s2

−∞
dt1

∫ t1

−∞
ds1 +

∫ 0

−∞
ds2

∫ 0

s2

dt1

∫ s2

−∞
ds1

+
∫ 0

−∞
ds2

∫ 0

s2

dt1

∫ t1

s2

ds1 +
∫ t2

0
ds2

∫ 0

−∞
dt1

∫ t1

−∞
ds1

}
I (t1 . . . s2)

whereI is the integrand appearing in (B.2). The variables of integration in each of these four
integrals is now ordered so that the factorization theorem (B.1) can be applied to the integrand.
The calculation of these contributions is then straightforward though tedious and will not be
repeated here. The final result is

〈|E(0)|2|E(t)|2〉 = 〈|E|4〉 exp(−2t) + 4(I1 + I2 + I3 + I4)
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with

I1 = 1
2abd(1 +η){(C[(3 +η)(1− η) + ξ2] + 2(1 +η)S)}

I2 = ad
{
C

[
2(1− η) + (2− η)ξ2

4(1 + ξ2)
− (1− η)(3 +η) + ξ2

b−1

]
+S

[
1 + ξ2 + η

4(1 + ξ2)
− 2(1 +η)

b−1

]}
I3 = Cad2 ×

{
ξ4 + (1− η)(7 + 5η)ξ2 + 2(3 +η)(1− η2)

b−1

− (2− 3η)ξ4 + (1− η)[(4− η − η2)ξ2 + 2(1− η2)]

4(1 + ξ2)

}
+Sad2

{
(1 + 3η)ξ2 + (1− η)(1 + 10η + 5η2)

b−1
− ξ

4 + (1− η)[(2 + 3η)ξ2 + (1 +η)2]

4(1 + ξ2)

}
I4 = a2(1 +η)2(1− e−2t )

4
− da

2(1 +η)

2
[C(1− η2 + ξ2) + 2ηS]

a = 1/[(1 +η)2 + ξ2] b = 1/[(3 +η)2 + ξ2] d = 1/[(1− η)2 + ξ2]

C = exp[−(1 +η)t ] cosξ t − exp(−2t) S = ξ exp[−(1 +η)t ] sinξ t.

(B.3)

Appendix C

In this appendix we calculate the correlation between the output intensities from two filters
centred at different frequencies, assuming that the input to each filter is the same realization
of the telegraph signal. The starting point is the definition (1) of the text and we shall exploit
the factorization property (B.1). According to (1) the output intensity from a filter centred at
normalized frequencyξ is given by

|E2
ξ | =

∫ t

−∞
dt1

∫ t

−∞
dt2T (t1)T (t2) exp[t1 + t2 + iξ(t1− t2)]. (C.1)

Here the filter time constant has been set equal to unity for simplicity. Applying stationarity
and symmetry arguments the required correlation function may be written as

〈|Eξ |2|E′ξ |2〉 =
∫ ∞

0
dt1 . . .dt4〈T (t1) . . . T (t4)〉 exp(t1 + · · · t4) cosξ(t1− t2) cosξ ′(t3− t4).

(C.2)

This multiple integral may be expressed as the sum of 24 terms in which the integration
variables are differently ordered. However, since the kernel is invariant under exchange oft1
with t2 andt3 with t4 this is reduced by a factor of four. Further symmetries eventually lead to

〈|Eξ |2|E′ξ |2〉 = 4
3∑
n=1

[In(ξ, ξ
′) + In(ξ

′, ξ)] (C.3)

where theIn are integrals of the kernel in equation (C.2) over the regionst1 < t2 < t3 < t4,
t1 < t3 < t2 < t4, t1 < t3 < t4 < t2. These may be evaluated with the help of (B.1) and we
obtain

I1(ξ, ξ
′) = 1

8a(ξ)b(ξ
′)(1 +η)(3 +η)

I2(ξ, ξ
′) = 1

8a(ξ
′)b(ξ)[f (ξ, ξ ′)c(ξ, ξ ′) + f (ξ,−ξ ′)c(ξ,−ξ ′)] (C.4)

I3(ξ, ξ
′) = 1

4a(ξ)b(ξ)[g(ξ, ξ
′)c(ξ, ξ ′) + g(ξ,−ξ ′)c(ξ,−ξ ′)]



Statistics of a filtered telegraph signal 8819

where

a(ξ) = [ξ2 + (1 +η)2]−1 b(ξ) = [ξ2 + (3 +η)2]−1 c(ξ, ξ ′) = [4 + (ξ + ξ ′)2]−1

f (ξ, ξ ′) = 2(3 +η)(1 +η)− 2ξξ ′ − ξ(ξ + ξ ′)(1 +η)− ξ ′(ξ + ξ ′)(3 +η) (C.5)

g(ξ, ξ ′) = (3 +η)(1 +η)− ξ2 − ξ(ξ + ξ ′)(2 +η).

(C.3) can be normalized with the help of formula (35) of the text and it is not difficult to check
that the resulting correlation function reduces correctly to the normalized fourth moment (36)
whenξ = ξ ′ as expected.

Appendix D

We require the inverse Fourier transform of equation (23) containing two products of Bessel
functions. It is easy to show (from the power series representations) that (23) is an even
function ofk. Thus, ony the cosine transform is required.

Our starting point is equation 6.672.4 from [35]∫ ∞
0
Kv(αx)Iv(βx) cos(cx)dx = 1

2
√
αβ
Qv− 1

2

(
α2 + β2 + c2

2αβ

)
(D.1)

usingx as the transform variable. This is valid for Re(α) > |Re(β)|, c > 0,Re(v) > − 1
2.

HereI andK are modified Bessel functions of the first and second kind, andQ is the Legendre
function of the second kind. The modified Bessel functions can be written in terms of ordinary
Bessel functions with imaginary arguments. We make the following substitutions:α = ε− ia,
β = −ib, a, b are real and positive, andε is a small positive contant—we will eventually
consider the limit asε→ 0. We then have the following relations (using [35] 8.405.1, 8.406.1,
and 8.407.2)

Iv(ibx)− eiπvJv(bx)

Kv([ε − ia]x) = iπ

2
e−

iπv
2 (J−v([a + iε)]x) + iY−v([a + iε]x)).

Substituting into (D.1) and neglecting terms inε2, gives

i
∫ ∞

0
Jv(bx)J−v([a + iε)x] cos(cx)dx

−
∫ ∞

0
Jv(bx)Y−v([a + iε]x) cos(cx)dx = ieiπv

√
ab
Qv− 1

2
(z) (D.2)

where

z = a2 + b2 − c2

2ab
+ iε

a2 − b2 + c2

2a3b
.

As we takeε → 0, we need to consider three different regimes, depending on the value ofz.
We will assume thata > b andv is real.

The first regime isz > 1. Asε→ 0 the Legendre function on the RHS of (D.2) becomes
real, as do the two integrals on the LHS. Thus, equating real and imaginary parts on each side,
we obtain ∫ ∞

0
Jv(bx)J−v(ax) cos(cx)dx = cos(πv)

π
√
ab

Qv− 1
2
(z) (D.3)∫ ∞

0
Jv(bx)Y−v(ax) cos(cx)dx = sin(πv)

π
√
ab

Qv− 1
2
(z). (D.4)
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The second regime is−1 < z < 1. Here the Legendre function has a branch cut along the
real axis. Asε → 0 the branch cut is approached from the upper half of the complex plane
(becausea > b). The value of the Legendre function then goes to ([35] 8.831.1 and 8.834.1)

Qv− 1
2
(z)− π

2 cos(πv)
(Pv− 1

2
(−z)− sin(πv)Pv− 1

2
(z))− iπ

2
Pv− 1

2
(z).

Then, equating real and imaginary parts as before, we find that∫ ∞
0
Jv(bx)J−v(ax) cos(cx)dx = 1

2
√
ab
Pv− 1

2
(−z) (D.5)∫ ∞

0
Jv(bx)Y−v(ax) cos(cx)dx = 1

2 cos(πv)
√
ab
(sin(πv)Pv− 1

2
(−z)− Pv− 1

2
(z)). (D.6)

Finally, for z < −1 we have ([35] 8.833.4)

Qv− 1
2
(z) = −eiπ(v− 1

2 )Qv− 1
2
(−z)

which gives us∫ ∞
0
Jv(bx)J−v(ax) cos(cx)dx = 0 (D.7)∫ ∞

0
Jv(bx)Y−v(ax) cos(cx)dx = 1

π
√
ab
Qv− 1

2
(−z). (D.8)

Using the relation

Yv = cos(πv)Jv − J−v
sin(πv)

(D.9)

one can use (D.3)–(D.8) to derive similar results for the transforms of other products ofJs and
Ys.

The result we require, i.e. the transfrom of (23), can be readily found by using (D.9) to
write (23) in terms ofJvJ−v products and applying the following two results ([35] 8.820.7 and
8.835.1)

Pv(z) = P−v−1(z)

Qv(z)−Q−v−1(z) = π

tan(πv)
Pv(z).
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